P .
M MolionSyslems

SOFTWARE

ForceSeatMl
v.1.8
2023.10.30

Miedzian.a 7 Street m 55-003 Nadolice V_Iielk iiiiiiiii

Contents

Generalinformation i 7
1.1 Introduction e 7
1.2 Features it e e e 7
1.3 OperatioNn mModesottt i it e e e e e e e e 8
1.4 Packagecontentttt i e e e 8
1.5 RequiremeNntsttt ittt ittt et e e 9
1.6 Implementationdetails e 10
1.7 Examples provided withthe SDK 11
1.8 Coordinate SyStemttt i i i e e e e e e e 11
1.9 Finalthoughts i i i i 12

C/CH+ ProJeCtS . . . oottt e 13
2.1 Compilationand linking i i i i e 13
2.2 Using APl object it i i et e it 14

CHPprojects e 15
3.1 Compilationand linking it i e 15
3.2 Using APl objectttt ittt 15

Unity 3D projects e 17
4.1 Application: positioncontrol i e 18
4.11 Controls e 18
4.2 Application: vehiclesimulation, 20
4.2.1 Controls . ..ot e e e e 20
4.3 Application: flight simulation i 22
4.3.1 Controls e 22
4.4 Upgrade to newer Unityversion ittt innennnnnn. 24

4.5 Missing 'Registry’ component ittt 24

CONTENTS

Unreal Engine projects i, 27
5.1 PIUBINS . . it i et e e e e e e e e e 27
5.2 Integration e e e e e 28
5.2.1 Blueprint e e e e e 28
5.2.2 L 28
5.3 Automaticprofileactivation. e e 29
5.3.1 Absolute pathlength i, 29
5.4 Application: top table positioning (C++) 30
5.5 Application: top table positioning (Blueprint) 32
5.6 Application: vehicle simulation (PhysX, C++)ttt iinn e 33
5.7 Application: vehicle simulation (PhysX, Blueprint) 35
5.8 Application: vehicle simulation (Chaos, Blueprint) 36
5.9 Application: flight simulation (C++), 37
5.10 Application: flight simulation (Blueprint) 39

5.11 Application: vehicle and flight simulation (Motion Cueing Interface, Blueprint) . 40

MATLAB and Simulink 41
6.1 Introduction e e e 41
6.2 ForceSeatDl and ForceSeatMI i 42
6.3 Simulink library configuration i i, 43
6.4 (0o T 0T+ 11 =T 3 45
6.4.1 MIiNGW ... e e et 45
6.4.2 Build Tools for Visual Studio 2019, 45
6.4.3 Changing defaultcompiler 47

Wide market applications 49
7.1 Introduction e e 49
7.2 Whencanlget AppID? ittt i ittt et et e, 49
7.3 What kind of AppID categories are available? 50
7.4 Howto get AppID? i i it i i ettt i e 50

Reproducing accelerations i 51
8.1 Introduction e 51
8.2 Limitationsandconcerns e 52
8.2.1 Recording from movingvehicle i i, 52
8.2.2 Low precision/low sampling rate of theinputdata 53
8.2.3 Angular velocities and angular accelerations 54

e .
MM MolionSyslems

CONTENTS

8.3 When will it work? i i i it e e e 54

Pe> .
R MolionSyslems

General information

1.1 Introduction

ForceSeatMl is an easy to use yet powerful interface that allows to add a motion platforms support
to any application or game (referred as SIM in next sections). In most applications there is no
need to control the hardware directly from the SIM. Because of that ForceSeatMl is used only to
send telemetry or positioning request to ForceSeatPM. This approach delegates responsibility of
transforming telemetry data to an actual platform motion from the SIM to ForceSeatPM. It also
simplifies error handling that the SIM has to implement.

With the latest version of the ForceSeatMl, it is possible to control the hardware with usage of
Inverse Kinematics. The SIM sends required top frame position and ForceSeatPM calculates re-
quired arms (or actuators) positions. This feature can be used in application where precise posi-
tioning is required instead of forces simulation.

& unity

unneas NATLAB

INFORMATION

This documentation applies only to ForceSeatMI 2.121 or newer. Older version of the APl is

not covered by this document. ForceSeatMI 2.63+ is not backward compatible on interface
and binary levels with 2.61 and previous versions. Switching from older ForceSeatMI to
2.63+ will require changes in your application source code.

1.2 Features

e SIM can choose between operation modes: telemetry (to generate sensation of forces) or
top frame positioning (to precisely control top frame position)

¢ SIM does not have to translate telemetry data to an actual motors position — it is done by
ForceSeatPM

¢ SIM does not depend on specific motion platform hardware, hardware related adjustments
are done inside ForceSeatPM

¢ All diagnostic and processing features of ForceSeatPM are still available and may be used

8

1 GENERAL INFORMATION

1.3 Operation modes

ForceSeatMI works in one of modes described below. For first time users it is recommended
to start from Table Position as it is the simplest example and works with built-in profile SDK —

Positioning.

Mode

Description

Applications

Telemetry data

In this mode the SIM sends information about ve-
hicle position, g-forces and accelerations in vehi-
cle coordination system directly to ForceSeatPM.
The whole transformation from forces to top frame
movements is done inside ForceSeatPM scripting
engine. It allows to easy change mapping and filter
parameters without the need to change anything in
the SIM.

Games and vehicle
physics simulations

Precise table po-
sition

In this mode the SIM sends top frame position (yaw,
pitch, roll, heave, sway and surge) in real world units
(rad, mm)). This allows the SIM to take full control
over top frame position.

For applications that
need better control
over top frame posi-
tion (e.g. equipment
testing applications)

1.4 Package content

¢ ForceSeatMI_Loader.c — a wrapper that forwards functions calls to real DLL (DLL is installed
by ForceSeatPM)

e ForceSeatMl.cs — C# API

¢ ForceSeatMI_*.h — files for C/C++ API

¢ ForceSeatMI_*.cs — files for C# API

e ForceSeatMI_*.py —files for Python API

e Unity/*.cs — Unity 3D C# API

¢ Plugins/UnrealEngine — dedicated Unreal Engine plug-in with helper class for vehicle and
plane telemetry extraction

¢ Plugins/UnrealEngine — dedicated Unreal Engine plug-in with helper class for vehicle and
plane telemetry extraction

¢ Plugins/Matlab/Simulink — library that allows to use ForceSeatMI with Simulink environ-

ment

e Examples — examples

TIP

ForceSeatMI uses DLL which is installed as part of the ForceSeatPM software. Make sure
that you have ForceSeatPM installed on your computer.

g MolionSystems

1.5 Requirements

1.5 REQUIREMENTS

¢ Following languages and frameworks are supported out of the box: C, C++, C#, Unity 3D

(C#) , Unreal Engine (C++)

¢ Native API dll is compiled with Visual Studio 2019 — static linking with MSVC is used
e Unity 3D examples support Unity 5.x or newer

¢ Unreal Engine examples support Unreal Engine 4.27, 5.3, 5.4 or newer

e C# examples require at least Visual Studio 2013 Express for Windows Desktop and .NET

Framework 4.0

e C/C++ examples require at least Visual Studio 2013 Express for Windows Desktop

WARNING

ForceSetMlI supports only Windows PC. If you wish to control the motion platform from

Linux computer or VR headset, then a proxy Windows PC might be required.

Customer's Windows PC

ForceSeatPM

ForceSeatMI

Customer's SIM application

Another PC or VR HeadSet

Customer's telemetry
sender

Customer's Windows PC

ForceSeatPM

Legend

Customer's hardware

Motion Systems hardware

Customer's software

Motion Systems software

ForceSeatMI

Custom telemetry receiver

Customer's Windows PC

Customer's SIM application

ForceSeatDI

Customer's Linux PC

Customer's SIM application

ForceSeatDI

Motion Platform

Pe> .
R MolionSyslems

10

1 GENERAL INFORMATION

1.6

Implementation details

structSize is a mandatory field which MUST be filled. It is used to handle backward/forward com-
patibility between DLL and the SIM.

telemetry.structSize = sizeof (FSMI_TelemetryACE);

mask (if it is presented) indicates what other fields are set. For example, if the SIM provides roll in
FSMI_TopTablePositionPhysical structure, then mask field has to contains FSMI_POS_BIT_POSITION
bit. Itis required to always include state field in the mask (FSMI_POS_BIT_STATE or FSMI_TEL_BIT_STATE).

#define FSMI_POS_BIT_STATE
#define FSMI_POS_BIT_POSITION
#define FSMI_POS_BIT_MATRIX
#define FSMI_POS_BIT_MAX_SPEED
#define FSMI_POS_BIT_TRIGGERS
#define FSMI_POS_BIT_AUX

If ForceSeatMl is used in the SIM, the SIM has to call ForceSeatMI_BeginMotionControl at least
once, otherwise there will be a paused state present all the time. After first call, you can choose
how to handle pause. One option is to call ForceSeatMI_EndMotionControl and another option
is to set state bit. Our recommendation is as follows:

Our recommendation is as follows:

e When the SIM enters runtime mode (it is going to send telemetry data), it calls Force-
SeatMI_BeginMotionControl

e When the SIM exists runtime mode (it is not going to send telemetry data for a while), it
calls ForceSeatMI_EndMotionControl

e When during runtime, there is a short pause event (e.g. user presses pause on a keyboard),
the SIM should use state field

In other words, is is recommended to use ForceSeatMI_BeginMotionControl/ForceSeatMI_EndMotionControl
to handle runtime — main menu transitions and state to handle short time pause events..

state fields consists of 8 bits, but in current version only the first bit is used.

e BITno. 0 — 1 (FSMI_STATE_PAUSE) means that runtime mode in SIM is paused, O (FSMI_STATE_NO_PAUSE)
means that runtime mode in SIM is running.

TIP
Remember to add FSMI_POS_BIT_STATE or FSMI_TEL_BIT_STATE to mask if state field is

going to be set. Make sure to set state at least once to unpause the motion platform after
ForceSeatMI_BeginMotionControl is called.

g MolionSystems

1.7 EXAMPLES PROVIDED WITH THE SDK 11

1.7 Examples provided with the SDK

Following examples are provided together with the SDK. Please make sure to use correct profile
for each example.

Example Description Required profile
TablePhyPos_CPP Show how to specify precise top | SDK — Positioning
TablePhyPos_CS table position by providing roll,
TablePhyPos_Matlab pitch, yaw, heave, sway and

TablePhyPos_Matlab_Simulink surge in real world units.
TablePhyPos_Unity
TablePhyPos_Unreal

Telemetry_Veh_Unity Show how to send vehicle | SDK — Vehicle Telemetry
Telemetry_Veh_Unreal telemetry data from the SIM to | ACE
Telemetry_Matlab ForceSeatPM.
Telemetry_Fly_Unity Show how to send aeroplane | SDK — Plane Telemetry
Telemetry_Fly_Unreal telemetry data from the SIM to | ACE

ForceSeatPM.
CSV_Acc_CPP Show how to control top ta- | SDK — Positioning
CSV_GPS_CS ble position using specify data
CSV_RollPitch_CPP stored in CSV file and how to

reproduce input linear accelera-
tion on the motion platform.

1.8 Coordinate system
In order to avoid confusion caused by different type of XYZ coordinate systems used by different

applications (e.g.left-hand rule, right-hand rule, ISO 8855), ForceSeatMI uses ship motion names
when applicable.

SURGE

Pe> .
MM MolionSystems

12 1 GENERAL INFORMATION

1.9 Final thoughts

¢ When platform does not move or the system is in pause state, then:

Check if correct profile is active in ForceSeatPM

Check if correct profile has been imported in ForceSeatPM (different operation modes
require different profiles)

Check ForceSeatMlI diagnostic to see if ForceSeatPM receives data from the SIM.
Check if paused indicator is on or off

Remember to configure mask field

Remember to set correct state value to leave pause mode.

¢ If you plan to use ForceSeatMl in vehicle (or plane) physics simulation application, check
https://motionsystems.eu/files/Vehicle_physics_simulation_application.pdf
document.

Pe> .
MM MolionSyslems

https://motionsystems.eu/files/Vehicle_physics_simulation_application.pdf

2.1

C/C++ projects

The ForceSeatMI can be easily used in any C/C++ x86 or x64 Windows application. You can leave
loading the DLL to the operation system (conventional approach, e.g. delay loadig) or use our
small loader class (recommended solution).

Our loader class makes sure that even if the DLL is not found, nothing bad will happen. Basically
when DLL is not loaded, all functions will return an error instead of crashing application (like it
often happens in conventional approach).

Compilation and linking

Please follow below steps in order to introduce ForceSeatMI to your SIM:

1. Make sure that ForceSeatPM is installed in the system.

2. Add directory containing ForceSeatMI_*.h files to your include paths.

3. Include ForceSeatMI_Loader.c file in your project. This file contains implementation of all
ForceSeatMI functions (from ForceSeatMI_Functions.h). The loader forwards function calls
to real DLL or returns error code when DLL is not found. It also handles DLL loading.

4. Compile and link the program.

TIP

ForceSeatMI_Loader uses DLL which is installed as part of the ForceSeatPM software. Make
sure that you have ForceSeatPM installed on your computer.

14 2 C/C++ PROJECTS

2.2 Using API object

Typical operation routine consists of following steps:

1. Create APl handle at the beginning of the application:

api = ForceSeatMI_Create ();

2. When simulation starts, call:

ForceSeatMI_BeginMotionControl (api);

3. The SIM should send telemetry data or positioning data in constant interval using one of
following functions:

ForceSeatMI_SendTelemetryACE (api, ...);
ForceSeatMI_SendTopTablePosPhy (api, ...);

4. When simulation stops, send:

ForceSeatMI_EndMotionControl(api);

5. Finally when the APl is no longer needed, release it:

ForceSeatMI_Delete(api);

e .
MM MolionSyslems

C# projects

The ForceSeatMI can be easily used in any .NET application. You just need to include Force-
SeatMI_*.cs files directly in your project.

3.1 Compilation and linking

Please follow below steps in order to introduce ForceSeatMI to your SIM:

1. Make sure that ForceSeatPM is installed in the system.
2. Add all ForceSeatMI_*.cs files to your project
3. Compile and link the program.

TIP

ForceSeatMI C# class uses DLL which is installed as part of the ForceSeatPM software. Make
sure that you have ForceSeatPM installed on your computer.

3.2 Using API object

Typical operation routine consists of following steps:

1. Create APl handle at the beginning of the application::

ForceSeatMl mi = new ForceSeatMI ();

2. When simulation starts, call:

mi.BeginMotionControl ();

3. The SIM should send telemetry data or positioning data in constant interval using one of
following functions:

mi.SendTelemetryACE (...);
mi.SendTopTablePosPhy (...);

4. When simulation stops, send:

mi. EndMotionControl ();

Unity 3D projects

Please follow below steps in order to include ForceSeatMl into your project.

1. Create Unity 3D project
2. Inside Assets directory of your project create ForceSeatMI directory
3. Copy following files into ForceSeatMI directory (for the reference you can check any of our
Unity 3D examples)

e ForceSeatMl.cs

e ForceSeatMI_Common.cs

e ForceSeatMI_ITelemetrylnterface.cs

e ForceSeatMI_Positioning.cs

e ForceSeatMI_Status.cs

e ForceSeatMI_TactileTranscuders.cs

e ForceSeatMI_Telemetry.cs

¢ ForceSeatMI_TelemetryACE.cs

e ForceSeatMI_Unity.cs

e ForceSeatMI_Aeroplane.cs

e ForceSeatMI_Vehicle.cs

TIP

ForceSeatMI APl uses DLL which is installed as part of the ForceSeatPM software. Make
sure that you have ForceSeatPM installed on your computer.

As of Unity 2022, there are new options in the project settings. In order for physics to work
properly, you need to make sure that the Simulation Mode is set to fixed update in the Physics
options.

WARNING

Since Unity 2022 make sure that Simulation Mode is set to Fixed Update in Physics prefer-
ences in Project Settings.

18 4 UNITY 3D PROJECTS

4.1 Application: position control

Examples: TablePhyPos_Unity (use built-in ForceSeatPM profile SDK — Positioning)

Positioning application requires usage of raw ForceSeatMI API. Typical operation routine consists
of following steps:

1. Import ForceSeatMI

using MotionSystems;

2. Create an APl object variable inside your class:

private ForceSeatMl m_fsmi;

3. Initialize it in Start method:

m_fsmi = new ForceSeatMl ();

4. If everything is loaded call:

if (m_fsmi.lsLoaded ())
{

m_fsmi.BeginMotionControl ();

}

5. The SIM should send positioning data in constant intervals using one of the following func-
tions:

m_fsmi.SendTopTablePosPhy (...);

6. At the end of simulation call

if (m_fsmi.lsLoaded())

{
m_fsmi.EndMotionControl ();
m_fsmi.Dispose ();

}

4.1.1 Controls

Use the WSAD or ARROW keys to control the platform and the SPACEBAR to raise it.

g MolionSystems

4.1 APPLICATION: POSITION CONTROL

Below exemplary source code comes from TablePhyPos_Unity example.

// FSMI api
private ForceSeatMl m_fsmi;

// Position in physical coordinates that will be sent to the platform
private FSMI_TopTablePositionPhysical m_platformPosition = new FSMI_TopTablePositionPhysical ();

void Start ()
{

// Load ForceSeatMl library from ForceSeatPM installation directory
// ForceSeatM| - BEGIN
m_fsmi = new ForceSeatMI ();

if (m_fsmi.lsLoaded ())

{
// Find platform’s components
m_shaft = GameObject.Find (”Shaft”);
m_board = GameObject. Find (”Board”);

SaveOriginPosition ();
SaveOriginRotation ();

// Prepare data structure by clearing it and setting correct size
m_platformPosition.mask = 0;
m_platformPosition.structSize = (byte)Marshal.SizeOf(m_platformPosition);

m_platformPosition.state = FSMI_State.NO_PAUSE;

// Set fields that can be changed by demo application
m_platformPosition.mask = FSMI_POS_BIT.STATE | FSMI_POS_BIT.POSITION;

m_fsmi.BeginMotionControl ();

SendDataToPlatform ();
// ForceSeatMI| - END
}
else
{
Debug.LogError(”ForceSeatMIl library has not been found!Please install ForceSeatPM.”);
}
}

void OnDestroy ()
{
// ForceSeatM| - BEGIN
if (m_fsmi.lsLoaded ())
{
m_fsmi. EndMotionControl ();
m_fsmi.Dispose ();
}
// ForceSeatMI| - END

}

private void SendDataToPlatform ()

{
// ForceSeatMI| - BEGIN
m_platformPosition.state = FSMI_State.NO_PAUSE;
m_platformPosition.roll = Mathf.Deg2Rad * m_roll;
m_platformPosition. pitch -Mathf.Deg2Rad * m_pitch;
m_platformPosition.heave = m_heave % 100;

// Send data to platform
m_fsmi.SendTopTablePosPhy(ref m_platformPosition);
// ForceSeatM| - END

Pe> .
R MolionSyslems

19

20

4 UNITY 3D PROJECTS

4.2 Application: vehicle simulation

Examples: Telemetry_Veh_Unity (use built-in ForceSeatPM profile SDK - Vehicle Telemetry ACE)

Recommendedreading: https://motionsystems.eu/files/Vehicle_physics_simulation_
application.pdf

For vehicle simulation application ForceSeatMI_Vehicle helper interface can be used. Typical op-
eration routine consists of following steps:

1. Create an APl object variable inside your class:

private ForceSeatMI_Unity m_Api;
private ForceSeatMI_Vehicle m_vehicle;

2. Initialize it in Start method:

m_Api = new ForceSeatMI_Unity ();
m_vehicle = new ForceSeatMI_Vehicle(m_Rigidbody)

3. Call:

m_Api.Begin ();

4. The SIM should send telemetry data in constant intervals using following function:

m_Api.Update (...);

5. At the end of simulation call

m_Api.End();

4.2.1 Controls

Use the WSAD or ARROW keys to control the vehicle and SPACEBAR to use handbrake.

g MolionSystems

https://motionsystems.eu/files/Vehicle_physics_simulation_application.pdf
https://motionsystems.eu/files/Vehicle_physics_simulation_application.pdf

4.2 APPLICATION: VEHICLE SIMULATION 21

Below exemplary source code comes from Telemetry_Veh_Unity example.

private void Start ()

{
m_Rigidbody = GetComponent();
// ForceSeatMI| - BEGIN
m_Api = new ForceSeatMI_Unity ();
m_vehicle = new ForceSeatMI_Vehicle(m_Rigidbody);
m_vehicle.SetGearNumber (m_CurrentGearNumber);
m_Api.SetAppID(””); // If you have dedicated app id, remove ActivateProfile calls from your code
m_Api. ActivateProfile ("SDK - Vehicle Telemetry ACE”);
m_Api.SetTelemetryObject (m_vehicle);
m_Api.Pause(false);
m_Api.Begin ();
// ForceSeatMI|l - END
}
private void OnDestroy ()
{
// ForceSeatM| - BEGIN
m_Api.End ();
// ForceSeatMl - END
}

private void Move(float steering, float accel, float footbrake, float handbrake)

{

// ForceSeatM| - BEGIN

if (m_vehicle != null & & m_Api != null)

{
m_vehicle.SetGearNumber (m_CurrentGearNumber);
m_Api.AddExtra(m_extraParameters);
m_Api.Update(Time. fixedDeltaTime);

}

// ForceSeatMIl - END

}

Pe> .
R MolionSyslems

22

4 UNITY 3D PROJECTS

4.3 Application: flight simulation

Examples: Telemetry_Veh_Unity (use built-in ForceSeatPM profile SDK - Vehicle Telemetry ACE)

Recommended reading: https://motionsystems.eu/files/Vehicle physics_simulation_
application.pdf

For flight simulation application ForceSeatMI_UnityAeroplane helper interface can be used. Typ-
ical operation routine consists of following steps:

1. Create an API object variable inside your class:

private ForceSeatMI_Unity m_Api;
private ForceSeatMI|_Aeroplane m_aeroplane;

2. Initialize it in Start method:

m_Api = new ForceSeatMI_Unity ();
m_aeroplane = new ForceSeatMI_Aeroplane(m_Rigidbody)

3. Call:

m_Api.Begin ();

4. The SIM should send telemetry data in constant intervals using following function:

m_Api.Update (...);

5. At the end of simulation call:

m_Api.End ();

4.3.1 Controls

Use the WSAD or ARROW keys to control the plane.

g MolionSystems

https://motionsystems.eu/files/Vehicle_physics_simulation_application.pdf
https://motionsystems.eu/files/Vehicle_physics_simulation_application.pdf

4.3 APPLICATION: FLIGHT SIMULATION 23

Below exemplary source code comes from Telemetry_Fly Unity example.

private void Start ()

{
m_Rigidbody = GetComponent();
// ForceSeatMl - BEGIN
m_Api = new ForceSeatMI_Unity ();
m_aeroplane = new ForceSeatMI|_Aeroplane (m_Rigidbody);
m_Api.SetAppID(””); // 1f you have dedicated app id, remove ActivateProfile calls from your code
m_Api. ActivateProfile ("SDK - Plane Telemetry ACE”);
m_Api.SetTelemetryObject (m_aeroplane);
m_Api.Pause(false);
m_Api.Begin ();
// ForceSeatM|l - END

}

private void OnDestroy ()

{
// ForceSeatM| - BEGIN
m_Api.End ();
// ForceSeatM|l - END

}

private void FixedUpdate ()
{

// ForceSeatM| - BEGIN
m_Api.Update(Time.fixedDeltaTime);
// ForceSeatMl| - END

}

Pe> .
R MolionSyslems

24 4 UNITY 3D PROJECTS

4.4 Upgrade to newer Unity version

Samples delivered with ForceSeatMI were created in older Unity version. When newer Unity loads
them, an upgrade is performed. When upgraded project is loaded into Unity first time, it usually
reports an error.

Do you want to upgrade your Project to a newer version of Unity?
The Project was created with an older Unity version.
As part of the upgrade, Unity may change your scripts and rebuild your Project library. This may take a few minutes.

For a list of any changes made to your Project’s packages, see the Logs/Packages-Upgrade.log file in your Project folder.

CANCEL CONFIRM

Make sure to click Ignore.

Enter Safe Mode? X

The project you are opening contains compilation

@ errors.

Entering Safe Mode allows you to resolve these
errors without waiting for the rest of your project to
import.

If you select Ignore (not recommended), your
project will continue to import, but it may be in a
broken or unusable state.

E Enter Safe Mode i gnore Quit

4.5 Missing 'Registry’ component

Im Textures
Im Packages

If there is an error related to missing Registry component in ForceSeatMl.cs, then there are two
solutions for it:

e you can remove routine that check Windows Registry to get path to ForceSeatPM installa-
tion and put hardcoded path directly in the code (not recommended)
e you can switch the project to use .NET 4.x instead of NET Standard 2.0

Pe> .
MM MolionSyslems

4.5 MISSING 'REGISTRY’ COMPONENT 25

Go to Project Settings and change Api Compatibility Level.

Undo Ctrl+Z
Redo Ctrl+Y
Select All Ctrl+A
Deselect All Shift+D
Select Children Shift+C
Select Prefab Root Ctrl+Shift+R
Invert Selection Ctrl+l
cut Ctrl+X
Copy Ctrl+C
Paste Crl+V
Paste As Child Ctrl+Shift+V
Duplicate Ctrl+D
Rename

Delete

Frame Selected F
Lock View to Selected Shift+F
Find Ctrl+F
Search All... Ctrl+K
Play Ctrl+P
Pause Ctrl+Shift+P
Step Ctri+Alt+P
Sign in...

Sign out

Selection

Project Settings...

Preferences..

Shortcuts...

Clear All PlayerPrefs

Graphics Tier

Grid and Snap Settings...

entifier

Mono

.NET Standard
—DNELdX

~ .NET Standard 2.0

nput g Input Manager (Old)

Script Compilation

Copy Defines

Pe> .
MM MolionSystems

Unreal Engine projects

5.1 Plugins

INFORMATION

Examples presented in this document and the plugins have been prepared to work with

Unreal Engine 4.27, 5.3 and 5.4. They might not work correctly with different versions of
the Unreal Engine.

ForceSeatMlI

Basic plugin that offers the largest set of methods to control a motion platform. With prior in-
tegration, it can be used in C++ projects as such. Integration with Blueprint projects requires an
additional layer to allow graphing and control from graph blocks.

ForceSeatMIPhysXVehicle

A plugin that is designed for vehicle simulation application that uses PhysX physics engine. It offers
a simplified set of functions for motion platform control. All calculations are performed internally
and the user only needs to ensure that provided basic methods are called in the right places in
the project. It needs ForceSeatMl plugin dependency to work properly. Can be used in Blueprint
and C++ projects.

ForceSeatMIChaosVehicle
A plugin that is designed for vehicle simulation application that uses Chaos Vehicles physics engine.
It offers a simplified set of functions for motion platform control. All calculations are performed
internally and the user only needs to ensure that provided basic methods are called in the right
places in the project. It needs ForceSeatMl plugin dependency to work properly. Can be used in
Blueprint and C++ projects.

ForceSeatMIPlane

A plugin for creating simulations of flying objects. Its working principle is very similar to Force-
SeatMIPhysXVehicle. The only thing the user is responsible for is calling provided functions in
the appropriate places. The whole calculation is performed internally on the basis of the APawn
object supplied to the plugin. It needs ForceSeatMI plugin dependency to work properly. Can be
used in Blueprint and C++ projects.

MotionCueinglnterface

MotionSystems’ implementation of Motion Cueing Interface (originally created by Sebastien Loze
and Francis Maheux). It needs ForceSeatMI plugin dependency and can be used in Blueprint
projects.

For more information please visit
https://github.com/uedplugins/MotionCueingInterface

https://github.com/ue4plugins/MotionCueingInterface

28 5 UNREAL ENGINE PROJECTS

5.2 Integration

5.2.1 Blueprint

In order to use the plugins in your projects, it is necessary to take some important integration
steps. For Blueprint projects, all you need to do is:

1. Inside root directory of your project create Plugins directory

2. Copy ForceSeatMl plugin folder into Plugins directory

3. Copy other plugin folders if you want to use them in your project

4. Add specific Controller to your Blueprint object and create control graphs

TIP

ForceSeatMI plugin uses DLL which is installed as part of the ForceSeatPM software. Make
sure that you have ForceSeatPM installed on your computer.

5.2.2 C++

For C++ projects, the integration looks a little different:

Inside root directory of your project create Plugins directory

Copy ForceSeatMl plugin folder into Plugins directory

Copy other plugin folders if you want to use them in your project

Add ForceSeatMI plugin (and others if used) dependency to your project inside YourPro-
ject.Build.cs

Eal R

PublicDependencyModuleNames.AddRange (new string[] { ”"Core”, ”"CoreUObject”,
"Engine”, "InputCore”, "PhysXVehicles”, “HeadMountedDisplay”,
”"ForceSeatMI|”, "ForceSeatMIPhysXVehicle” 1});

TIP

ForceSeatMI plugin uses DLL which is installed as part of the ForceSeatPM software. Make
sure that you have ForceSeatPM installed on your computer.

g MolionSystems

5.3 AUTOMATIC PROFILE ACTIVATION 29

5.3 Automatic profile activation

For the most realistic feel and experience, ForceseatPM software offers a set of built-in profiles
that support various games and applications. It is very important to choose the right profile that
fits your application.

In case of using ForceSeatMI plugin, the plugin can automatically activate configured profile on
start-up (this features is enabled by default). You can provide name of the profile in your projects
settings, in ForceSeatMI plugin section.

u o Prdjees Saiilgs

Flatiuiiiio [search Details

4Plugins - ForceSeatMI

s ciout | Epor [impor [st s

4 Settin

SDK - Plane Telemetry ACE

TIP

Profile name provided in project settings takes precedence over the default hardcoded pro-
file name used internally by various ForceSeatM| components.

If you are providing ApplID, make sure that Activate Profile on Startup is DISABLED.

5.3.1 Absolute path length

In the latest versions of the Unreal Engine it is important to remember that the project path should
not be larger than 260 characters as this may cause unexpected errors with the MSVC toolchain.

WARNING

Make sure the project absolute path is less than 260 characters long.

Pe> .
R MolionSyslems

30

5 UNREAL ENGINE PROJECTS

5.4 Application: top table positioning (C++)

Examples: TablePhyPos_Unreal CPP (uses built-in ForceSeatPM profile SDK - Positioning)

Positioning application requires usage of raw ForceSeatMI API. Typical operation routine consists
of following steps:

1.
2.
3.

Inside root directory of your project create Plugins directory

Copy ForceSeatMl plugin folder into Plugins directory

Add ForceSeatMlI plugin (and others if used) dependency to your project inside YourPro-
ject.Build.cs

PublicDependencyModuleNames.AddRange (new string[] { ”"Core”, ”"CoreUObject”,
"Engine”, ”"InputCore”, "PhysXVehicles”, ”"HeadMountedDisplay”, ”ForceSeatMI|” });

. Create a pointer member variable inside your class which will point to an instance of IForce-
SeatMI_API:

IForceSeatMI_API* Api;

. Initialize it to null value in class constructor:

Api(nullptr)

When simulation starts (BeginPlay() method of your APawn implementation) create API
object. Default name SDK - Positioning will be replaced with the profile name from the
plugin settings if available (check Profile acivation section for more details):

Api = IForceSeatMl ::Get (). CreateAPI(”SDK - Positioning”);

Initiate motion platform control by calling:

Api->BeginMotionControl ();

. The SIM should send positioning data in constant intervals using one of the following func-

tions

Api->SendTopTablePosPhy (...);

. At the end of simulation call:

Api->EndMotionControl ();

e .
MM MolionSyslems

5.4 APPLICATION: TOP TABLE POSITIONING (C++) 31

Below exemplary source code comes from TablePhyPos_Unreal_CPP example.

ATablePhyPos_UnrealPawn :: ATablePhyPos_UnrealPawn ()
// ... generated UE4 code removed for better clarity
, Api(nullptr)

// ... generated UE4 code removed for better clarity

// ForceSeatM| - BEGIN

memset(& PlatformPosition, 0, sizeof(PlatformPosition));

PlatformPosition.structSize sizeof (PlatformPosition);

PlatformPosition.maxSpeed PLATFORM_MAX_SPEED;

PlatformPosition . mask FSMI_POS_BIT_STATE | FSMI_POS_BIT_POSITION | FSMI_POS_BIT_MAX_SPEED;
// ForceSeatM|l - END

}
void ATablePhyPos_UnrealPawn:: Tick(float DeltaTime)
{
// ... generated UE4 code removed for better clarity

// ForceSeatM| - BEGIN
SendCoordinatesToPlatform ();
// ForceSeatM| - END

}

void ATablePhyPos_UnrealPawn:: BeginPlay ()

{
Super:: BeginPlay ();

// ForceSeatM| - BEGIN

delete Api;

Api = IForceSeatMl ::Get (). CreateAPI(”SDK - Positioning”);
if (Api)

Api->BeginMotionControl ();
}

SendCoordinatesToPlatform ();
// ForceSeatMl - END

// ... generated UE4 code removed for better clarity

}
void ATablePhyPos_UnrealPawn :: EndPlay(const EEndPlayReason::Type EndPlayReason)
{

Super:: EndPlay (EndPlayReason);

// ForceSeatM| - BEGIN

if (Api)
{
Api->EndMotionControl ();
}
// ForceSeatMI| - END
}
void ATablePhyPos_UnrealPawn::SendCoordinatesToPlatform ()
{
// ForceSeatMl| - BEGIN
if (Api)
{
PlatformPosition.state = FSMI_STATE_NO_PAUSE;
PlatformPosition.roll = CurrentDrawingRoll;
PlatformPosition.pitch = -CurrentDrawingPitch;
PlatformPosition.heave = CurrentDrawingHeave;
Api->SendTopTablePosPhy(&PlatformPosition);
}
// ForceSeatM| - END
}

Pe> .
R MolionSyslems

32 5 UNREAL ENGINE PROJECTS

5.5 Application: top table positioning (Blueprint)

Examples: TablePhyPos_Unreal BP (uses built-in ForceSeatPM profile SDK - Positioning)

Positioning application in blueprint version requires usage of ForceSeatMI_AP|_BP. Typical opera-
tion routine consists of following steps:

Create blueprint project
Inside root directory of your project create Plugins directory
Copy ForceSeatMl plugin folder into Plugins directory
Find and open pawn blueprint
On Components tab click +Add and add ForceSeatMI_API_BP object
Use right mouse button on the blueprint to add new graph element and type Update in the
Search box
Select ForceSeatMI_API_BP from the list
Use right mouse button on the blueprint to add new graph element and type Make TopT-
ablePositionPhysicalBP in the Search box
9. Select Make TopTablePositionPhysicalBP from the list
10. Connect all necessary links and you are ready to go

ok wNE

®© N

Forceseativll

Pe> .
MM MolionSyslems

5.6 APPLICATION: VEHICLE SIMULATION (PHYSX, C++)

5.6 Application: vehicle simulation (PhysX, C++)

&)
-2
®
]
]
E']

~\
»

J

v

- MERETRETN W =y
- MW T =y

- ENENED T

—:
-
-‘-” _L
=
=

L]

L]

]

4

‘

Examples: Telemetry_Veh_PhysX_Unreal_CPP (uses built-in ForceSeatPM profile SDK — Vehicle
Telemetry ACE)

Recommendedreading: https://motionsystems.eu/files/Vehicle_physics_simulation_
application.pdf

Vehicle simulation application requires PhysXVehicles and extracts automatically all necessary
data from APawn and UWheeledVehicleMovementComponent objects.

Typical operation routine consists of following steps:

1. Inside root directory of your project create Plugins directory

2. Copy ForceSeatMl plugin folder into Plugins directory

3. Copy ForceSeatMIPhysXVehicle plugin folder into Plugins directory

4. Add ForceSeatMlI plugin dependency to your project inside YourProject.Build.cs

PublicDependencyModuleNames.AddRange (new string[] { ”"Core”, ”"CoreUObject”,
"Engine”, "InputCore”, "PhysXVehicles”, "HeadMountedDisplay”,
"ForceSeatMI|”, "ForceSeatMIPhysXVehicle” 1});

5. Create a pointer to instance of IForceSeatMIPhysXVehicle_ControllerCore:

IForceSeatMIPhysXVehicle_ControllerCorex Controller;

6. Initialize it to null value in class constructor:

Controller(nullptr)

7. At start-up (BeginPlay() method of your APawn implementation) create Controller object:

Controller = ForceSeatMIPhysXVehicle::Get (). CreateControllerCore(this);

8. Initiate motion platform control by calling:

Controller ->Pause (false);
Controller ->Begin ();

9. The SIM should send telemetry data in constant intervals using the following function:

Controller ->AddExtraTransformation (ExtraTransformation);
Controller ->Update(Delta);

10. At the end of simulation call:

Controller ->End ();

Pe> .
R MolionSyslems

33

https://motionsystems.eu/files/Vehicle_physics_simulation_application.pdf
https://motionsystems.eu/files/Vehicle_physics_simulation_application.pdf

34

5 UNREAL ENGINE PROJECTS

Below exemplary source code comes from Telemetry_Veh_Unreal_CPP example.

ATelemetry_Veh_UnrealPawn :: ATelemetry_Veh_UnrealPawn ()

{

}

Controller(nullptr)

// ... generated UE4 code removed for better clarity

void ATelemetry_Veh_UnrealPawn:: Tick(float Delta)

{

}

Super:: Tick(Delta);
// ... generated UE4 code removed for better clarity

++lterator;
// ForceSeatMI| - BEGIN

// Use extra parameters to generate custom effects, for exmp. vibrations.

// filtered , smoothed or processed in any way.

’

ExtraTransformation .yaw =0
ExtraTransformation . pitch 0
ExtraTransformation.roll 0
ExtraTransformation.right = 0;
0
0

’

ExtraTransformation .up =
ExtraTransformation.forward

’

if (Controller)

{
Controller ->AddExtraTransformation (ExtraTransformation);
Controller ->Update(Delta);

}

// ForceSeatM|l - END

void ATelemetry_Veh_UnrealPawn:: BeginPlay ()

{

Super::BeginPlay ();
Iterator = O;

// ForceSeatM| - BEGIN
delete Controller;

Controller = ForceSeatMIPhysXVehicle::Get(). CreateControllerCore(this);

if (Controller)

{
Controller ->Pause(false);
Controller ->Begin ();

}
// ForceSeatMI| - END

They will

NOT be

Pe> .
MM MolionSyslems

5.7 APPLICATION: VEHICLE SIMULATION (PHYSX, BLUEPRINT)

5.7 Application: vehicle simulation (PhysX, Blueprint)

Examples: Telemetry Veh PhysX_Unreal BP (uses built-in ForceSeatPM profile SDK — Vehicle
Telemetry ACE)

Recommendedreading: https://motionsystems.eu/files/Vehicle_physics_simulation_
application.pdf

Vehicle simulation application requires PhysXVehicles and extracts automatically all necessary
data from AWheeledVehicle object.

Typical operation routine consists of following steps:

1. Create blueprint vehicle project
Inside root directory of your project create Plugins directory
Copy ForceSeatMI plugin folder into Plugins directory
Copy ForceSeatMIPhysXVehicle plugin folder into Plugins directory
Find and open vehicle (pawn) blueprint
On Components tab click +Add Component and add ForceSeatMIPhysXVehicle_Controller
object
7. Use right mouse button on the blueprint to add new graph element and type Set vehicle
object in the Search box
8. Select Set Vehicle Object(ForceSeatMIPhysXVehicle_Controller) from the list
9. Connect Event Tick block to Exec
10. Connect Self to Input

ouhkswnN

" Force Seat MIPhys XVehicle Controller

| Set Vehicle Object

— B
{;Z:- Event Tick _//_- Target

Input

Pe> .
R MolionSyslems

https://motionsystems.eu/files/Vehicle_physics_simulation_application.pdf
https://motionsystems.eu/files/Vehicle_physics_simulation_application.pdf

36

5 UNREAL ENGINE PROJECTS

5.8 Application: vehicle simulation (Chaos, Blueprint)

Kmth Gear

Examples: Telemetry Veh Chaos_Unreal BP (use built-in ForceSeatPM profile SDK — Vehicle Teleme-
try ACE)

Recommended reading: https://motionsystems.eu/files/Vehicle_physics_simulation_
application.pdf

Vehicle simulation application requires ChaosVehiclesPlugin and extracts automatically all neces-
sary data from AWheeledVehiclePawn object.

Typical operation routine consists of following steps:

Create blueprint Chaos vehicle project

Inside root directory of your project create Plugins directory

Copy ForceSeatMl plugin folder into Plugins directory

Copy ForceSeatMIChaosVehicle plugin folder into Plugins directory

Find and open vehicle (pawn) blueprint

On Components tab click +Add and add ForceSeatMIChaosVehicle_Controller object
Use right mouse button on the blueprint to add new graph element and type Set vehicle
object in the Search box

Select Set Vehicle Object(ForceSeatMIChaosVehicle_Controller) from the list
Connect Event Tick block to Exec

10. Connect Self to Input

NoukwnNeR

© %

ForceseatMiiGhaos Vehicle

&> Event Tick

f SetVehicle Object

Pe> .
RA MotionSystems

https://motionsystems.eu/files/Vehicle_physics_simulation_application.pdf
https://motionsystems.eu/files/Vehicle_physics_simulation_application.pdf

5.9 APPLICATION: FLIGHT SIMULATION (C++)

5.9 Application: flight simulation (C++)

Examples: Telemetry_Fly_Unreal_CPP (uses built-in ForceSeatPM profile SDK — Plane Telemetry

ACE)

Recommendedreading: https://motionsystems.eu/files/Vehicle_physics_simulation_

application.pdf

Typical operation routine consists of following steps:

1.

u b WN

10.

Pe> .
R MolionSyslems

Add ForceSeatMlI plugin dependency to your project inside YourProject.Build.cs

PublicDependencyModuleNames.AddRange(new string[] { ”"Core”, ”"CoreUObject”,
"Engine”, ”"InputCore”, ”"ForceSeatMI|”, ”"ForceSeatMIPlane” });

. Inside root directory of your project create Plugins directory

. Copy ForceSeatMl plugin folder into Plugins directory

. Copy ForceSeatMIPlane plugin folder into Plugins directory

. Create a pointer member variable inside your class which will point to an instance of IForce-

SeatMIPlane_ControllerCore:

IForceSeatMIPlane_ControllerCorex Controller;

Initialize it to null value in class constructor:

Controller(nullptr)

When simulation starts (BeginPlay() method of your APawn implementation) create Con-
troller object:

Controller = ForceSeatMIPlane::Get (). CreateControllerCore(this);

Initiate motion platform control by calling:

Controller ->Pause (false);
Controller ->Begin ();

The SIM should send telemetry data in constant intervals using the following function:

Controller ->AddExtraTransformation (ExtraTransformation);
Controller ->Update (DeltaSeconds);

At the end of simulation call:

Controller ->End ();

37

https://motionsystems.eu/files/Vehicle_physics_simulation_application.pdf
https://motionsystems.eu/files/Vehicle_physics_simulation_application.pdf

38 5 UNREAL ENGINE PROJECTS

Below exemplary source code comes from Telemetry_Fly_Unreal_CPP example.

void ATelemetry_Fly_UnrealPawn:: Tick(float DeltaSeconds)

{
// ... generated UE4 code removed for better clarity
Super:: Tick (DeltaSeconds);
// ForceSeatMl| - BEGIN
// Use extra parameters to generate custom effects, for exmp. vibrations. They will NOT be
// filtered , smoothed or processed in any way.
ExtraTransformation .yaw = 0;
ExtraTransformation. pitch 0;
ExtraTransformation. roll = 0;
ExtraTransformation.right = 0;
ExtraTransformation.up = 0;
ExtraTransformation.forward = 0;
if (Controller)
{
Controller ->AddExtraTransformation (ExtraTransformation);
Controller ->Update (DeltaSeconds);
}
// ForceSeatMl - END
}

void ATelemetry_Fly_UnrealPawn ::BeginPlay ()

{
Super:: BeginPlay ();

Iterator = 0;

// ForceSeatM| - BEGIN
delete Controller;

Controller = ForceSeatMIPlane ::Get().CreateControllerCore(this);

if (Controller)

{
Controller ->Pause(false);
Controller ->Begin ();

}

// ForceSeatMI| - END

Pe> .
MM MolionSyslems

5.10 APPLICATION: FLIGHT SIMULATION (BLUEPRINT)

5.10 Application: flight simulation (Blueprint)

[

Examples: Telemetry_Fly_Unreal_BP (uses built-in ForceSeatPM profile SDK — Plane Telemetry
ACE)

Recommendedreading: https://motionsystems.eu/files/Vehicle_physics_simulation_
application.pdf

Typical operation routine consists of following steps:

Create blueprint plane project

Inside root directory of your project create Plugins directory

Copy ForceSeatMl plugin folder into Plugins directory

Copy ForceSeatMIPlane plugin folder into Plugins directory

Find and open plane (flying pawn) blueprint

On Components tab click +Add and add ForceSeatMIPlane_Controller object
Use right mouse button on the blueprint to add new graph element and type Set plane
object in the Search box

Select Set Vehicle Object(ForceSeatMIPlaneVehicle_Controller) from the list
Connect Event Tick block to Exec

10. Connect Self to Input

NouhkwnR

L0

ForceseatiiiiBlane

Force Seat MIPlane Controller

[SetPlane Object
> Event Tick

Pe> .
R MolionSyslems

39

https://motionsystems.eu/files/Vehicle_physics_simulation_application.pdf
https://motionsystems.eu/files/Vehicle_physics_simulation_application.pdf

40 5 UNREAL ENGINE PROJECTS

5.11 Application: vehicle and flight simulation (Motion Cueing Interface, Blueprint)

MCI examples use MotionSystems’ implementation of Motion Cueing Interface developed origi-
nally by Sebastien Loze and Francis Maheux. For more information please visit:
https://github.com/uedplugins/MotionCueingInterface

Examples:
MCI_Veh_Unreal_BP (use built-in ForceSeatPM profile SDK — Vehicle Telemetry ACE)
MCI_Fly_Unreal_BP (use built-in ForceSeatPM profile SDK — Plane Telemetry ACE)

Recommendedreading: https://motionsystems.eu/files/Vehicle_physics_simulation_
application.pdf

Typical operation routine consists of following steps:

Create blueprint project

Inside root directory of your project create Plugins directory

Copy ForceSeatMl plugin folder into Plugins directory

Copy MotionCueinginterface plugin folder into Plugins directory

Find and open pawn blueprint

On Components tab click +Add Component and add Motion Probe object
Use right mouse button on the blueprint to add new graph element and type Set base
object in the Search box

Select Set Base Object (Motion Probe) from the list

Connect Event Tick block to Exec

10. Connect Mesh to Input

MOLOHGCHETGNRIENfAce

NoukwnNeR

© %

Motion Probe

_J set Base Object

[
v [Target
< Event Tick arge
» Input

Delta Seconds O

Plane Mesh

Pe> .
RA MotionSystems

https://github.com/ue4plugins/MotionCueingInterface
https://motionsystems.eu/files/Vehicle_physics_simulation_application.pdf
https://motionsystems.eu/files/Vehicle_physics_simulation_application.pdf

6.1

MATLAB and Simulink

Introduction

This is not (only) a game anymore! From now on you can use your favorite motion platform with
MATLAB (R2019 and R2020 version) programming environment. Math, algorithms, signal pro-
cessing, building and modeling advanced motion systems — all of those can be achieved with the
use of the real machine. Size does not matter! All our products are ready to work with the latest
version of MATLAB and Simulink applications.

TIP

A number of MathWorks products require that you have a third-party compiler installed

on your system. The compiler is also required to work with MEX files. Make sure that you
have the correct version of compiler installed before you start using ForceSeatDI and/or
ForceSeatMlI.

You can find more information about compiler configuration at the following Mathworks webpage:
https://www.mathworks.com/help/matlab/matlab_external/choose-c-or-c-compilers.
html

https://www.mathworks.com/help/matlab/matlab_external/choose-c-or-c-compilers.html
https://www.mathworks.com/help/matlab/matlab_external/choose-c-or-c-compilers.html

42 6 MATLAB AND SIMULINK

6.2 ForceSeatDIl and ForceSeatMI

As a company we provide two APIs to work with our machines. Both of them can be used with
MATLAB and Simulink. It is on your preferences what way would you like to choose. The general
idea that stays behind them is the same — to minimize the end user’s effort required to control
the motion platform. We strongly believe that our customers time is one of the most important
values. That’s why we put a lot of effort to make things as smooth and intuitive as they can be.

pitch

— heave SetPosPhy
F: sway

BmELE®|e

f—— g

GetRoll_rad @

Our development team has created many examples how to use ForceSeatDl and ForceSeatMI with
MATLAB and Simulink environments. You can find them in the *.zip package that is provided to
you after the license is purchased. They are designed to work out of the box which means no
need for sophisticated settings, file copying or other time-consuming stuff. All that needs to be
done is to unpack the package, get familiar with the provided README file, and you are ready to

go.

FREEIEEIEIEIONR] ©

Pe> .
MM MolionSyslems

6.3 SIMULINK LIBRARY CONFIGURATION

6.3 Simulink library configuration

Launch MATLAB application and set up path to Simulink compatible plugins provided by our team.
The plugin can be found in ForceSeatMI/ForceSeatDI archive, in plugins/Matlab/Simulink sub

directory.

HOME pLOTS

NSNS CNEN scor<h Documentation p

Ep Open Variable v & Runand Time

@ n{}: O Ll Find Files & E () M= E‘i& 7 At LEJ El © Preferences (% @ S —
New

(3 Request Support
Ll Leam MATLAB

New New Open ({5] Compare Import Save Favorites Simulink | Layout Add-Ons | Help
Script LiveScript ¥ v Data Workspace [%) Clear Workspace ¥~ (53 Clear Commands + - - -
FiLE VARIABLE cobe SIMULINK PrRONMENT RESOURCES

o E @l & | b C» Users > usr > Projects b _main » APls b Directinterface b+ _publish » examples b FastPos_Matlab_Simulink
>

>>
>
>
>
>
>
>> A\ SetPath - o X
>
>> All changes take effect immediately.
> MATLAB search path:
: I cdbokles I C:\Program Files\MATL/ PP ~

Ci\Program Files\MATLAB\R2019b\ toolbox\matlab\opps
7 Add with Subfolders.. C:\Program Files\MATLAB\R2019b\toolbox\matlab\audiovideo
o C:\Program Files\MATLAB\R2019b\toolbox\matlab\cefclient
> C:\Program Files\MATLAB\R2019b\toolbox\matlab\ configtools
> CAProgram Files\MATLAB\R20196\toolbox\matlab\ connector2\academy
i Ci\Program Files\MATLAB\R2D19b\toolbex\matlab\ connector2\ common
= Moveto Top CAProgram Files\MATLAB\R
CAProgram Files\MATLAB:R20196\ toolbox\matlab connector\connector

> Move Up CAProgram Files\MATLAB\R20196\toolbox\matlab\ connector\editor
> C:\Program Files\MATLAB\R20196\ toolbox\matlab\ connector\figures
> TSI C:\Program Files\MATLAB\R2019b\toolbox\matlab\ connector2\http
7 T C:\Program Files\MATLAB\R2012b\tool box\matlab\ conn ector2\interpreter
> atlo oo Ci\Program Files\MATLAB\R2019b\toolbox\matlab\ connector2\logger
i C:\Program Files\MATLA
i C:\Program Files\MATLAB\R2D18b\toolbox\matleb\ connector2\ mgg
i C:\Program Files\MATLABR
> CAProgram Files\MATLAB\R20196\toclbox\matisb\connector2\restmatiab o,
> Remove < >
>3
iz Save Close Revert Defoult Help
>
>
>
>
>
>
>

g o>

After that you can launch Simulink and create a blank model project.

Simulink Start Page

3 Open.

Recent
> My Templates

rotecey ~ Simulink

@ From Source Control

Learn

& B3

o
Blank Model v Blank Subsystem Blank Library

8—o

Project from SVN

[Bp Simuiink Onramp
@ Statefow Onramp

Folder to Project Project from Git

Show more
> Audio Toolbox
> Communications Toolbox

> DSP System Toolbox

- a x

e I amees _

Al VE

Learn More

Blank Project

Code Generation

Pe> .
R MolionSyslems

43

44 6 MATLAB AND SIMULINK

In the Library Browser you can find all necessary blocks. Simply drag what you need to your
project, connect input and outputs, and you are ready to go.

Forceseatol_posphy.

sopadsul fandg b

®
oy
]
=
=]
=
o

Pe> .
MM MolionSyslems

6.4

6.4.1

6.4.2

6.4 COMPILERS

Compilers

MinGW

MinGW is available via Matlab add-ons mechanism:

¢ start Matlab

¢ go Home, Add-ons and click Get Add-ons

¢ find and install MinGW

e after installation is finished, MinGW is configured as default compiler for C and C++

Build Tools for Visual Studio 2019

The first step is to download and install Build Tools for Visual Studio 2019 or Visual Studio 2019
Community/Professional/Enterprise. Make sure to select Desktop development with C++ during
installation.

Link: https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/
?sku=BuildTools&rel=16

Unfortunately Matlab R2020b does not detect Build Tools correctly and two files have to be mod-
ified (if you installed Community, Professional or Enterprise edition you can skip below steps):

e For C++:

MATLABROOT\ bin\win64\ mexopts\msvcpp2019 . xml
e.g. C:\Program Files\MATLAB\R2020b\bin\win64\mexopts\msvcpp2019.xml

e ForC:

MATLABROOT\ bin\win64\ mexopts\msvc2019 . xml
e.g. C:\Program Files\MATLAB\R2020b\bin\win64\mexopts\msvc2019.xml

For both files the procedure is the same:

e open msvcpp2019.xml or msvc2019.xml in notepad or other text editor

¢ find part containing Microsoft.VisualStudio.Product.Community

¢ duplicate <and> section and replace Microsoft.VisualStudio.Product.Community with Mi-
crosoft.VisualStudio.Product.BuildTools

¢ repeat above steps for all entries in file.

Pe> .
MM MolionSystems

45

https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=BuildTools&rel=16
https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=BuildTools&rel=16

46 6 MATLAB AND SIMULINK

For example, below is the section before modification:

<VCVARSALLDIR>

<or>

<and>

<envVarExists name="ProgramfFiles(x86)” />

<fileExists name="SS\Microsoft Visual Studio\lnstaller\vswhere.exe” />

<cmdReturns name=""S$S\\vswhere.exe" -version "[16.0,17.0)"

-products Microsoft. VisualStudio.Product.Enterprise -property installationPath -format value” />
<fileExists name="S$S\VC\ Auxiliary\Build\vcvarsall.bat” />

<dirExists name="SS"/>

</and>

<and>

<envVarExists name="ProgramFiles(x86)” />

<fileExists name="$S\Microsoft Visual Studio\lnstaller\vswhere.exe” />

<cmdReturns name=""S\\vswhere.exe" -version "[16.0,17.0)& quot;

-products Microsoft. VisualStudio.Product.Professional -property installationPath -format value” />
<fileExists name="S$S\VC\ Auxiliary\Build\vcvarsall.bat” />

<dirExists name="$$"/>

</and>

<and>

<envVarExists name="ProgramfFiles(x86)” />

<fileExists name="$$\Microsoft Visual Studio\lnstaller\vswhere.exe” />

<cmdReturns name=""$S\\vswhere.exe" -version "[16.0,17.0)"

-products Microsoft.VisualStudio.Product.Community -property installationPath -format value” />
<fileExists name="$S\VC\ Auxiliary\Build\vcvarsall.bat” />

<dirExists name="SS"/>

</and>

</or>

</VCVARSALLDIR>

and after modification:

<VCVARSALLDIR>

<or>

<and>

<envVarExists name="ProgramFiles(x86)” />

<fileExists name="S$$\Microsoft Visual Studio\lnstaller\vswhere.exe” />

<cmdReturns name=""S\\vswhere.exe" -version "[16.0,17.0)& quot;

-products Microsoft. VisualStudio.Product.Enterprise -property installationPath -format value” />
<fileExists name="S$S\VC\ Auxiliary\Build\vcvarsall.bat” />

<dirExists name="$$"/>

</and>

<and>

<envVarExists name="ProgramfFiles(x86)” />

<fileExists name="SS\Microsoft Visual Studio\lnstaller\vswhere.exe” />

<cmdReturns name=""$S\\vswhere.exe" -version "[16.0,17.0)"

-products Microsoft. VisualStudio.Product.Professional -property installationPath -format value” />
<fileExists name="S$S\VC\ Auxiliary\Build\vcvarsall.bat” />

<dirExists name="S"/>

</and>

<and>

<envVarExists name="ProgramFiles(x86)” />

<fileExists name="$S\Microsoft Visual Studio\lnstaller\vswhere.exe” />

<cmdReturns name=""S\\vswhere.exe" -version "[16.0,17.0)& quot;

-products Microsoft.VisualStudio.Product.Community -property installationPath -format value” />
<fileExists name="S$S\VC\ Auxiliary\Build\vcvarsall.bat” />

<dirExists name="$$"/>

</and>

<and>

<envVarExists name="ProgramfFiles(x86)” />

<fileExists name="S\Microsoft Visual Studio\lnstaller\vswhere.exe” />

<cmdReturns name=""S$S\\vswhere.exe" -version "[16.0,17.0)"

-products Microsoft. VisualStudio.Product.BuildTools -property installationPath -format value” />
<fileExists name="S$S\VC\ Auxiliary\Build\vcvarsall.bat” />

<dirExists name="S"/>

</and>

</or>

</VCVARSALLDIR>

Pe> .
RA MotionSystems

6.4 COMPILERS 47

Alternatively you can download modified files (msvc2019.xml and msvcpp2019.xml) and copy
them to MATLABROOT\bin\win64\mexopts (e.g. C:\Program Files\MATLAB\R2020b\bin\win64\mexopts)

e modified msvc2019.xml: https://motionsystems.eu/files/c614abb0532ac70c/msvc2019.
xml

e modified msvcpp2019.xml: https://motionsystems.eu/files/c614abb0532ac70c/
msvcpp2019.xml

6.4.3 Changing default compiler

Once XML files modification is completed, start Matlab and issue: mex -setup cpp

>> mex -setup cpp
MEX configured to use 'MinGW64 Compiler (C++)’ for C++ language compilation.

To choose a different C++ compiler, select one from the following:
MinGW64 Compiler (C++) mex -setup:C:\Users\ABC\AppData\Roaming\MathWorks\MATLAB\R2020b\mex_C++_win64.xml| C+

Microsoft Visual C++ 2019 mex -setup:’C:\Program Files\MATLAB\R2020b\bin\win64\mexopts\msvcpp2019.xml’ C++
>>

Click on Microsoft Visual C++ 2019 link and Matlab will change default C++ compiler. Next perform
similar steps for C compiler: mex -setup c

>> mex -setup c
MEX configured to use 'MinGW64 Compiler (C)’ for C language compilation.

To choose a different C compiler, select one from the following:
MinGW64 Compiler (C) mex -setup:C:\Users\ABC\AppData\Roaming\MathWorks\MATLAB\R2020b\mex_C_win64.xml| C

Microsoft Visual C++ 2019 (C) mex -setup:’C:\Program Files\MATLAB\R2020b\bin\win64\mexopts\msvc2019.xml’ C
>>

If everything is configured correctly, there will be following output:

MEX configured to use ’Microsoft Visual C++ 2019 (C)’ for C language compilation.
MEX configured to use ’Microsoft Visual C++ 2019’ for C++ language compilation.

Pe> .
R MolionSyslems

https://motionsystems.eu/files/c614abb0532ac70c/msvc2019.xml
https://motionsystems.eu/files/c614abb0532ac70c/msvc2019.xml
https://motionsystems.eu/files/c614abb0532ac70c/msvcpp2019.xml
https://motionsystems.eu/files/c614abb0532ac70c/msvcpp2019.xml

7.1

7.2

Wide market applications

Introduction

By default FoceSeatMl license is bound to specific device. It means that if the application/game
is used with different motion platform, then separate license key is required for each motion
platform. It is easy to imagine situation where that kind of license policy will be an obstacle.
Typical example is a game available in Steam where anybody can buy it. Solution to this problem
is AppID mechanism. This document should help you to understand how to obtain AppID, what
are requirements and how to implement it.

When can | get AppID?

There are following general requirements:

1. You have successfully integrated ForceSeatMl in your application/game and the applica-
tion/game works correctly with at least one of our motion platforms.

2. You are ready to publish your application/game in online store (e.g. Steam) so literally ev-
erybody can buy it

3. You are ready to sell your application/game to specific set of customers but for some reasons
(security or military related) you just cannot publish it in typical online store — this kind of
cases will required additional verification.

4. You are ready to deliver a fully working beta version to us for verification. If you are pro-
hibited to show the full product for some reason, a limited edition can be provided for
verification as alternative.

50

7 WIDE MARKET APPLICATIONS

7.3 What kind of AppID categories are available?

There are two ApplD categories: for product and for publisher.

ApplID for product

This kind of AppID is bound to specific application/game.

There is a dedicated profile in ForceSeatPM with product related name and icon (image).
ForceSeatPM automatically detects the application/game installation in the system, config-
ures it (if the application/game requires configuration) and binds the dedicated profile to
it.

The application/game executable name cannot be changed (the name is used during license
verification) and it cannot be simple Run.exe.

If the application/game executable is signed, ForceSeatMlI also verifies the signature of the
file.

ApplD for publisher

This kind of ApplID is bound to the publisher and can be used in any publisher’s applica-
tion/game.

Thereis a SINGLE dedicated profile in ForceSeatPM named after publisher name, e.g. "ACME
Products”.

ForceSeatPM does not detect publisher applications/games automatically, users have to
activate the "ACME Products” profile before they start the application/game.

The application/game executable name is not checked.

The application executable MUST be signed by “code signing certificate” (it can be self-sign-
certificate).

ForceSeatMl verifies the signature of the file, so all publishers applications/products must
the same "code signing certificate”.

7.4 How to get AppID?

10.
11.

Finish integration of the standard ForceSeatMI SDK in your application/game

. For Unreal Engine: Disable Activate Profile on Startup is your project settings, in Force-

SeatPM plugin section. Otherwise remove all ActivateProfile calls from your code, they are
not allowed when ApplD is used

Provide Steam ID to us if the application is available in Steam store.

Provide beta version of the application for verification — we want to check if it uses the
motion platform correctly and implement installation detection in ForceSeatPM.

. If you cannot provide normal version, please provide limited version (proof of concept) of

the application so we can check basic functionally (and get .EXE file signature). This applies
only to Publisher ApplID cases.

Provide suggested profile name and image (270x100).

Once we verify the beta version, we will assign the AppID and send it to you.

For Unreal Engine: Enter ApplD is your project settings, in ForceSeatPM plugin section. Oth-
erwise add SetApplID call to your code, rebuild your application/game and send it to us once
again.

. We finish integration and double check if everything works correctly.

Next we send you beta version of the ForceSeatPM so you can verify it on your side.
Finally when everything is confirmed to work correctly, we publish new ForceSeatPM for
end users to download.

e .
MM MolionSyslems

8.1

Reproducing accelerations

Introduction

If the SIM goal is to reproduce source linear accelerations accurately (1:1), then due to its opera-
tion principle telemetry mode cannot be used. Telemetry modes uses classical washout algorithm
which utilizes high pass filters internally and in the result it generates sensation of forces to trick
human senses and to use motion platform’s work envelope efficiently.

Fromhttps://en.wikipedia.org/wiki/Motion_simulator:

"The classical washout filter is simply a combination of high-pass and low-pass filters; thus, the
implementation of the filter is compatibly easy. However, the parameters of these filters have to
be empirically determined. The inputs to the classical washout filter are vehicle-specific forces
and angular rate. Both of the inputs are expressed in the vehicle-body-fixed frame. Since low-
frequency force is dominant in driving the motion base, force is high-pass filtered, and yields the
simulator translations. Much the same operation is done for angular rate.”

You can find more details in the following document (chapter 2):
https://motionsystems.eu/files/Vehicle_physics_simulation_application.pdf

The solution is to use input linear accelerations to calculate velocity, then displacement and in
the result a series of position. Finally top table positioning mode should be used to fit the motion
platform with generated trajectory.

It seems that using basic displacement and velocity calculation formulas is sufficient enough to
generate a trajectory that reproduces input acceleration:

a, - dt*

Sp="58p—1+Vp1-dt +

Vo =V,_1+a,*xdt

TIP

In order to achieve the highest precision, it is recommend to run the calculation at as high
frequency as possible. For instance if the source file contains sample in 0.00001[s] intervals,

it is the recommended to use all of them to generate trajectory and then just skip unneeded
positions from generated trajectory (not source file) when control messages are being sent
to the motion platform in 0.004[s] intervals. Otherwise calculated trajectory might drift
away from the center/neutral position and in the result the top table will drift away as well.

https://en.wikipedia.org/wiki/Motion_simulator
https://motionsystems.eu/files/Vehicle_physics_simulation_application.pdf

52

8 REPRODUCING ACCELERATIONS

8.2

8.2.1

There is a CSV_Acc_CPP example available in SDK archive that shows how to reproduce accelera-
tion stored in CSV file. Below exemplary code comes from that example:

static constexpr const int MSG_INTERVAL_MS = 4;

for (/% ...each sample...*/)

{

// Interval between samples might not be constant, so calculate dT each callback call
auto dTime_s = 0.000001 % (data->timestamp_us - ctx->previousSampleTimeMark_us);
ctx ->previousSampleTimeMark_us = data->timestamp_us;

ctx ->sway.displacement += ctx->sway.velocity = dTime_s
+ data->accSway * (dTime_s % dTime_s % 0.5f);

ctx->surge.displacement += ctx->surge.velocity % dTime_s
+ data->accSurge % (dTime_s % dTime_s *x 0.5f);

ctx ->heave.displacement += ctx->heave.velocity % dTime_s
+ data->accHeave % (dTime_s % dTime_s * 0.5f);

ctx ->sway.velocity += data->accSway * dTime_s;
ctx->surge.velocity += data->accSurge % dTime_s;
ctx ->heave.velocity += data->accHeave % dTime_s;

ctx->position->roll = 0;
ctx->position ->pitch = 0;
ctx ->position ->yaw = 0;
ctx->position ->sway = ctx->sway.displacement % 1000 /* m to mm x/;
ctx->position ->surge = ctx->surge.displacement % 1000 /* m to mm */;
ctx->position ->heave = ctx->heave.displacement % 1000 /* m to mm %/;

// NOTE: Without a washout algorithm , the top table may leave the work area quite quickly
// if input data recording was not started when the vehicle was at rest. In other words,
// the vehicle’s velocities and accelerations should be 0 when input recording begins,
// otherwise the pre-existing vehicle velocities and accelerations will be unknown,

// and as a result, the top table may drift away from the center.

if (data->timestamp_us - ctx->lastMsgTimeMark_us >= 1000 % MSG_INTERVAL_MS)

{
// We want to do math on all samples to achieve higher precision but only send data
// to the motion platform every MSG_INTERVAL_MS.
ctx ->timer.WaitUntil_ms(data->timestamp_us / 1000);
ctx ->lastMsgTimeMark_us = data->timestamp_us;
ForceSeatMI_SendTopTablePosPhy(ctx->api, ctx->position);

}

Limitations and concerns

Since the goal is to reproduce the input linear accelerations accurately, then by definition no
washout algorithm can be used as it would alter the accelerations. That kind of approach causes
a risk of the top table drifting away from the center.

Recording from moving vehicle

The table will drift away from the center in almost all cases when recorded data comes from mov-
ing vehicle (car, plane, train, ...). This is related to the fact that the motion platform’s work enve-
lope is in centimeters range where vehicle’s range can be kilometers. The recommended solution
and basically the only solution for this case, is to sacrifice acceleration reproduction accuracy and

Pe> .
MM MolionSyslems

8.2.2

8.2 LIMITATIONS AND CONCERNS

use washout algorithm that will keep the top table inside its work envelope. In other words, it is
recommend to use telemetry mode and configure high pass filters is ACE module accordingly.

Please refer to following document for details (chapter 3):
https://motionsystems.eu/files/Vehicle_physics_simulation_application.pdf

TIP

Due to principle of the operation, the motion platform is not able to reproduce sustained

linear acceleration directly and instead tilt coordination should be used. If your recording
contains sustained (long term) accelerations, then it is recommend to use ACE and benefits
of classical washout algorithm.

Low precision/low sampling rate of the input data

When you are replaying accelerations stored in CSV file, low precision of the input data and/or
low sampling rate of the input data might case drifting issue. Typical scenario is when there are
peaks in acceleration (e.g. when your object hits something) and not of them are present in the
CSV file. Below is simple example that shows what happens to accumulated velocity when one
positive acceleration peak is missing. If there are more instances of this in the sample file, the top
table will drift even further away from the center.

/ / »t
v
A
Pt
5
A
.
Pt

g MotionSystems

53

https://motionsystems.eu/files/Vehicle_physics_simulation_application.pdf

54 8 REPRODUCING ACCELERATIONS

8.2.3 Angular velocities and angular accelerations

Despite the fact that this chapter addresses mainly linear accelerations, similar limitations and
concerns apply also to angular velocities and angular accelerations.

8.3 When will it work?

Accurate 1:1 liner accelerations reproduction will work correctly only in limited number of appli-
cation when the test object (the one the data was recorded from) moves inside small close space
- it moves within similar range to motion platform’s work envelope and always gets back to center
at some point in time. For other applications, it is recommend to use some kind of washout filters
(custom implementation or ACE) to keep the top table withing motion platform’s work envelope
and to simulate sustained (long term) accelerations (if required).

e .
MM MolionSyslems

	General information
	Introduction
	Features
	Operation modes
	Package content
	Requirements
	Implementation details
	Examples provided with the SDK
	Coordinate system
	Final thoughts

	C/C++ projects
	Compilation and linking
	Using API object

	C# projects
	Compilation and linking
	Using API object

	Unity 3D projects
	Application: position control
	Controls

	Application: vehicle simulation
	Controls

	Application: flight simulation
	Controls

	Upgrade to newer Unity version
	Missing 'Registry' component

	Unreal Engine projects
	Plugins
	Integration
	Blueprint
	C++

	Automatic profile activation
	Absolute path length

	Application: top table positioning (C++)
	Application: top table positioning (Blueprint)
	Application: vehicle simulation (PhysX, C++)
	Application: vehicle simulation (PhysX, Blueprint)
	Application: vehicle simulation (Chaos, Blueprint)
	Application: flight simulation (C++)
	Application: flight simulation (Blueprint)
	Application: vehicle and flight simulation (Motion Cueing Interface, Blueprint)

	MATLAB and Simulink
	Introduction
	ForceSeatDI and ForceSeatMI
	Simulink library configuration
	Compilers
	MinGW
	Build Tools for Visual Studio 2019
	Changing default compiler

	Wide market applications
	Introduction
	When can I get AppID?
	What kind of AppID categories are available?
	How to get AppID?

	Reproducing accelerations
	Introduction
	Limitations and concerns
	Recording from moving vehicle
	Low precision/low sampling rate of the input data
	Angular velocities and angular accelerations

	When will it work?

