P .
M MolionSyslems

SOFTWARE

ForceSeatDI
v.l.1
2023.12.06

Miedzian.a 7 Street m 55-003 Nadolice V_Iielk iiiiiiiii

Contents

1.1
1.2
1.3
14

3.1
3.2
33
3.4

Generalinformation 5
Introduction i i i e e e e e e 5
ForceSeatMIvs ForceSeatDl ittt 5
Features COmMPariSONottt ettt ettt ettt ittt e eeeeens 6
Documentationttt i i i e et e e 6
How to activate thelicense 9
Cross compiling for Raspberry Pi 11
Introduction it e e e e 11
NeW Projectottt i i it it i e e et e e 11
Projectconfiguration ittt i i i e 14

Buildand run oo e it i e e, 17

11

1.2

General information | I

Introduction

ForceSeatDI (Direct Interface) is a lower level interface than ForceSeatMI. It controls hardware
directly and ForceSeatPM is not required at all. All error handling and status checking have to be
performed by the application. This interface allows to control more than one motion platform
from the same PC and allows to create complex but fully synchronized movements of multiple
motion platforms.

& unity

unzear NATLAB

ForceSeatMl vs ForceSeatDI

ForceSeatMI (Motion Interface) is a programming interface that allows to add a motion platform
support to any application or a game. The ForceSeatMI does not control hardware directly — it
sends all data to ForceSeatPM. This approach delegates the responsibility of transforming teleme-
try data to a real motion from the application to ForceSeatPM. It means that application develop-
ers do not have to worry about things like platform disconnections, transmission errors, thermal
protection warnings or signal filtering.

Direct Interface is less complex than ForceSeatMl. It manages hardware directly, thus ForceSeatPM
is not essential. Checking errors or status is a duty of the application. It allows to control multiple
platforms from the same computer. Thanks to such a solution it is possible to build complex and
fully synchronized movements of multiple motion platforms at once.

WARNING

ForceSeatDI should be used only in very specific applications. For all other applications,
ForceSeatMl is recommended.

1 GENERAL INFORMATION

1.3 Features comparison

ForceSeatMI ForceSeatDI

C/C++ [| |

C# | |

Python | [|

Unity 3D | |
(only Windows PC target plat- | (only Windows PC target plat-
form) form)

Unreal Engine | [|
(only Windows PC target plat- | (only Windows PC target plat-
form) form)

Matlab/Simulink [| [|

Microsoft Windows | |

Linux O |

(Ubuntu 16.04.3 LTS Desktop x64)

Raspberry Pi 3 O |

(armv7l1 4.9.35))

Raspberry Pi 4 64-bit O |

(armv72 6.1.5))

Gear VR platforms O O

(e.g. Oculus Go, Samsung Gear VR)

Multiple platforms from single PC | |

over USB (same data sent to all plat- | (separated control of each plat-
forms) form)

Multiple platforms from single PC | |

over Ethernet

Easy error handling | O
(by ForceSeatPM) (by the application)

Diagnostic features | O
(by ForceSeatPM) (by the application)

Requires ForceSeatPM | O

Telemetry mode & scripting engine | O

Motion profile selection by the user | O

Inverse kinematics [] |

Fordward kinematics | |

Motion compensation for VR | O
(by VR HeadWay in Force- | (bythe application, e.g. camera
SeatPM) position correction)

Licensing per motion platform per motion platform
(license stored on PC) (license stored on motion con-

troller)

1.4 Documentation

Idea behind ForceSeatDI and its API structure is similar to ForceSeatMI and at this moment is it
not described separately in any document. Please refer to ForceSeatM| documentation to get
better understanding how the motion platform control works and examine examples delivered in
ForceSeatDI SDK archive to see implementation details.

Pe> .
RA MotionSystems

1.4 DOCUMENTATION

ForceSeatDI should be used only in very specific applications. For all other applications,

ForceSeatMl is recommended.

g MolionSysltems

7

How to activate the license

ForceSeatDI license is kept in the motion controller so the activation process is different than for
ForceSeatMI. Once you receive the activation code do following steps:

Install ForceSeatPM

Open ForceSeatPM main window

Click Tools and Diagnostic and then Devices

Click Quick Codes

Enter the activation code. The verification might take a while.
Once finish, close the Quick Codes window.

Turn off the device

Turn on the device

In Devices window you should see FSDI displayed in Features field

=

WO NOUL A WN

R4 Motion (x]

Devices

Below are all recognized devices including motion platforms and accessories.

Device #1: 6DoF
I B B ooy to clipboard)
Status: 0K

Serial number:

Firmware:
Work time:
Features

Offline:

Configure

105.2
25h 48m 20s
default

no

Temperature (C):
Work days:

Paused:

Level Calibration

0,0,0,0
25

no

Quick Codes

Hardware ID
Up time:

Parking:

54
Oh 04m 57s

no

3.1

3.2

Cross compiling for Raspberry
Pi

Introduction

This short tutorial shows the idea of using VisualGDB to build one of our examples for Raspberry Pi.
This section does not describe the full tool chain and build system configuration, it only indicates
a few important key points that should help you to configure your project:

e preprocessor directives
e copying .so file to destination board
e debugging the program as root.

For a more detailed description of how to use and configure VisualGDB, please refer to VisualGDB
documentation.

TIP

VisualGDB is not mandatory for ForceSeatDl to work on Raspberry Pi. You can compile
ForceSeatDI using any other build system.

New project

Start Visual Studio and create a new Linux Project. Make sure to create it in the directory without
spaces in the name, e.g. C:\ForceSeatDI

‘Solution name: | L] Create directory for solution

] Create new Git repository

3 CROSS COMPILING FOR RASPBERRY PI

Choose Application as project type and MSBuild as tool chain.

New Linux Project

© | 9 create anew project

E 4 shared Library

W static Library @ python-based
[Sure e acess Z& unit Test
P— 7 o ke
A CMake [at
e .

0 /Import a project

© /| create a project from a custom template

] Show acvance setins pages

<prevovs [News | men | Concar

Choose building under Raspberry Pi over network. In order to do it, create new SSH connection,
then fill IP address and credentials. Make sure that your Raspberry Pi has libusb and compiler
installed (check ForceSeatDI readme.txt for details).

/" New Linux Project

- o X
C3 - .
(J){} New Linux Project
— ® Ja Build the project under Linux over network

Remote computer: B pi@192.168.2.141 B
<Searchy .

[—— Remote toochain: 12
O xml”
0 Deploy the Prégg vingous 1o i susssien

Source code access Deployment computer: B Greate a new SSH connection N Create a new Vagrant VM

Deployment folder:

I8 Define a new global alias.

© iy Build the project locally with a cross-compiler

(o) == Use the Windows 10 Linux Subsystem

The following the nd be them:

L

192.168.2.141

< previous || Next> Einish Cancel

& Create a New SSH Connection =]

Setup new SSH connection

™ Host Name: |192.168.2.141
¥
User Name: pi
7 Authentication method
@ Password: | oo

[] Setup public key authentication (more secure than saving the password)

QO Public key in Windows key store (associated with your user account): | Auto. RSA DSA
O OpenSSH key

[] override default key location L4

[Passphrase:

[] Use HTTP CONNECT proxy:

[] Enable zlib compression (recommended for slow connections)

] Emulate SCP file transfers with ‘cat' (required for Dropbear SSH server with no SCP support)
Transfer folders using: File-by-file SCP (slow)

[Enable keep-alive packets every: 0 seconds

Pe> .
RA MotionSystems

After wizard creates project for you, rename RaspberryProjectl.cpp to Main.cpp

Copy following files from ForceSeatDI archive code directory to your project directory:

1. ForceSeatDl.h

Solution Explorer > @ x

B o-s @0 p -

Search Solution Explorer (Ctrl+;)

m Solution 'RaspberryProject1’ (1 project)
4 [% RaspberryProject1

P =W References

P U5 External Dependencies
+ Header files

Resource files

T

4 S ileg
RaspberryProjectl.cpp
4 . Visua settings

[RaspberryProject1-Debug.vgdbsettings
[RaspberryProject1-Release.vgdbsettings

P~

2. ForceSeatDI_Defines.h
3. ForceSeatDI_Functions.h
4. ForceSeatDI_Loader.c
5. ForceSeatDI_Structs.cs

3.2 NEW PROJECT

Add ForceSeatDI_Loader.c to your project and copy Main.cpp from FastPos_CPP_Linux example

(overwrite the Main.cpp in your project).

Pe> .
R MolionSyslems

13

14 3 CROSS COMPILING FOR RASPBERRY PI

3.3 Project configuration

Open the project Properties.

Solut

i=l
g

Solution Explorer
& o~

Search Solution Explarer (Ctrl+;)

SR

m Solution 'RaspberryProject1’ (1 project)

VisualGDB Project Properties
Build

Rebuild

Clean

View

Analyze

Project Only

Scope to This

Mew Solution Explorer View
Build Dependencies
Custom Shortcuts

Add

Class Wizard...

Manage NuGet Packages...
Set as StartUp Project
Debug

Cut

Paste

Remoyve

Rename

Unload Project

Rescan Solution

Open Folder in File Explorer

Ctrl+Shift+X

Ctrl+X
Ctrl+V
Del

Properties

Alt+Enter

el

Pe> .
RA MotionSystems

3.3 PROJECT CONFIGURATION

Go to Preprocessor configuration and add NO_IMPORT_FORCESEAT_DI to the list of definitions.

RaspbemryProject1 Property Pages

Configuration: |Active(Debug)

4 Configuration Properties
General
Instrumentation
Linux Project
Remote Build
Debugaging

4 CjCe+
General
Optimization
Preprocessor
Precompiled Headers
Advanced
Instrumentation
Custom Step
Output
Command Line

I> Linker

~ | Platform: |Active(VisualGDB) e

Configuration Manager...

r Definitions |Compile.PreprocessorDefinitions);DEBUG= i NO_IMPORT_FORC ESEAT_DE[]

Ignore Standard Include Paths

Preprocessor Definitions
Defines a preprocessing symbols for your source file.

| Anuluj | Zastosuj

Go to VisualGDB settings and open Debug configuration (Release configuration for release build).

Solution Explorer v I x
co@lo-c @ s -
Search Solution Explorer (Ctrl+;) P~

m Solution 'RaspberryProject1’ (1 project)
4 [% RaspberryProject1

P =B References

p = External Dependencies
+ Header files

Resource files

4 . Source files
b *+ ForceSeatDl_Loader.c
P *+ Maincpp

4 i 5S¢

@ RaspberryProject1-Debug.vgdbsettings
1 RaspberryProject1-Release.vgdbsettings

el Vil i ellel¢=l Team Explorer Class View Resource View

Pe> .
RA MotionSystems

15

16

3 CROSS COMPILING FOR RASPBERRY PI

Go to Debug Settings and select run as root.

yProject1-Debug.v:

RN 4

-

Project settings

Synchronized Directories

Unit Tests.

MSBuild settings

Debug settings

Dynamic Analysis

s NS >

Code Coverage

=5

Custom build steps

=<s
v

Custom debug steps.

Custom shortcuts.

Raw Terminal

IntelliSense Directories

& -all

IntelliSense Settings

Code Analyzers

Path mapping

¥ ’\ ¢

If the application is not

Q Debug settings

=% Connection

The following computers (configured on the first page) are involved in the debug setup:

SSH

S
PKZ-PC 192.168.2.141

F Common Settings

Run debugger/gdbserver as: | < ;l '-u root (using 'sudo’) I ‘

Underlying low-level debugger: | GDB from the toolchain Custom ‘

Debug mode: ¥ Newlnstance £ Attach @ Pythonscript @ Custom GDB Stub ,"' Fully Cu
4 »
Debugged executable: |fﬂargetPath) ‘

Executable arguments: | ‘

[] Custom working directory: $(BuildDir)
Additional environment: | ‘ @
Extra LD_LIBRARY_PATH: | ‘ @

Program output

Show program output in: | The ‘Program Console’ tool window A terminal program on the target's screen ‘

[] Keep remote console window open after debugging ends.

Linux GUI (XT1) | ﬁ Forward to Windows machine (via XMing) L\ Show on target X Disable ‘

WARNING

executed as root, it will not be able to detach the USB device from

the kernel and connect to the motion platform.

Go to Custom build steps and add new After build step — Transfer a single file.

RaspberryPoject-Debugvgvserings: -+ > |

é Project settings ?T Custom build steps
b Synchronized Directories Before transferring fles: (empty) ©
Before building: (empty)
B e ‘ ©
After building I (aacion | ®
T MSBuild settings 2 copy 2. RSPi 3. local i (3) " Addanew action
patn |c: L s | |[Z] on | & tocal computen) . in command
Debug settings Transter a single fle
Target path: | |S(TargetDin)/ForceSeatDI32:s0 | &) on | T Main build machine (pi@192.168.2.141) v
- g S TransTer synchonize 3 directory
‘Q Dynamic Analysis Ovenwrite: | & Always - Only when missing # When time/size don't match | x= Setan intemal variable
2 Reference a reusable action list
Code Coverage
./ Edit selected action(s)
K Delete
4 copy
P —— @ pure
@ Flag as skipped
D Custom shortuts Before cleaning: [empty) ©
@ o Tl After cleaning: [empty) ©

Browse and select source file ForceSeatDI32.RSPi_3.so on your PC disk.

Type: S(TargetDir)/ForceSeatDI32.s0 into Target path.

g MolionSystems

3.4 Build and run

Rebuild the project.

Solution Explorer
A RRCRA- = R
Search Solution Explorer (Ctrl+;)

m Solution '‘RaspberryProject1’ (1 project)

loer Deniocid

VisualGDB Project Properties
W ¢f Build

Clean

View
Analyze
4 Project Only
Scope to This
@ Mew Solution Explorer View
Build Dependencies
Custom Shortcuts
Add
Ba Class Wizard...
E Manage NuGet Packages...
o

Solut

Set as StartUp Project
Debug

¥ cut
Paste

. X Remove

[J Rename
Unload Project
Rescan Solution

(<4 Open Folder in File Explorer

& Properties
Specir pruy

Ctrl+Shift+X

Ctrl+X
Ctrl+V
Del

Alt+Enter

Run the application and check the Output console.

Output

Show output from: | VisualGDB Program Output -l & | | 2| 2a

toolling tecminal: Operation not permitted\n”

&
[Pratform 1

s/i: I—

+ X

Pe> .
R MolionSyslems

3.4 BUILD AND RUN

17

	General information
	Introduction
	ForceSeatMI vs ForceSeatDI
	Features comparison
	Documentation

	How to activate the license
	Cross compiling for Raspberry Pi
	Introduction
	New project
	Project configuration
	Build and run

