
SOFTWARE
ForceSeatDI
v.1.1
2023.12.06

Contents

1 General information . 5

1.1 Introduction . 5

1.2 ForceSeatMI vs ForceSeatDI . 5

1.3 Features comparison . 6

1.4 Documentation . 6

2 How to activate the license . 9

3 Cross compiling for Raspberry Pi . 11

3.1 Introduction . 11

3.2 New project . 11

3.3 Project configuration . 14

3.4 Build and run . 17

3

1General information

1.1 Introduction

ForceSeatDI (Direct Interface) is a lower level interface than ForceSeatMI. It controls hardware
directly and ForceSeatPM is not required at all. All error handling and status checking have to be
performed by the application. This interface allows to control more than one motion platform
from the same PC and allows to create complex but fully synchronized movements of multiple
motion platforms.

1.2 ForceSeatMI vs ForceSeatDI

ForceSeatMI (Motion Interface) is a programming interface that allows to add a motion platform
support to any application or a game. The ForceSeatMI does not control hardware directly – it
sends all data to ForceSeatPM. This approach delegates the responsibility of transforming teleme‐
try data to a real motion from the application to ForceSeatPM. It means that application develop‐
ers do not have to worry about things like platform disconnections, transmission errors, thermal
protection warnings or signal filtering.

Direct Interface is less complex than ForceSeatMI. Itmanages hardware directly, thus ForceSeatPM
is not essential. Checking errors or status is a duty of the application. It allows to control multiple
platforms from the same computer. Thanks to such a solution it is possible to build complex and
fully synchronized movements of multiple motion platforms at once.

WARNING
ForceSeatDI should be used only in very specific applications. For all other applications,
ForceSeatMI is recommended.

6 1 GENERAL INFORMATION

1.3 Features comparison

ForceSeatMI ForceSeatDI
C/C++ ■ ■
C# ■ ■
Python ■ ■
Unity 3D ■

(only Windows PC target plat‐
form)

■
(only Windows PC target plat‐
form)

Unreal Engine ■
(only Windows PC target plat‐
form)

■
(only Windows PC target plat‐
form)

Matlab/Simulink ■ ■
Microsoft Windows ■ ■
Linux
(Ubuntu 16.04.3 LTS Desktop x64)

□ ■

Raspberry Pi 3
(armv7l 4.9.35))

□ ■

Raspberry Pi 4 64‐bit
(armv72 6.1.5))

□ ■

Gear VR platforms
(e.g. Oculus Go, Samsung Gear VR)

□ □

Multiple platforms from single PC
over USB

■
(same data sent to all plat‐
forms)

■
(separated control of each plat‐
form)

Multiple platforms from single PC
over Ethernet

□ ■

Easy error handling ■
(by ForceSeatPM)

□
(by the application)

Diagnostic features ■
(by ForceSeatPM)

□
(by the application)

Requires ForceSeatPM ■ □
Telemetry mode & scripting engine ■ □
Motion profile selection by the user ■ □
Inverse kinematics ■ ■
Fordward kinematics ■ ■
Motion compensation for VR ■

(by VR HeadWay in Force‐
SeatPM)

□
(by the application, e.g. camera
position correction)

Licensing per motion platform
(license stored on PC)

per motion platform
(license stored on motion con‐
troller)

1.4 Documentation

Idea behind ForceSeatDI and its API structure is similar to ForceSeatMI and at this moment is it
not described separately in any document. Please refer to ForceSeatMI documentation to get
better understanding how the motion platform control works and examine examples delivered in
ForceSeatDI SDK archive to see implementation details.

WARNING

1.4 DOCUMENTATION 7

ForceSeatDI should be used only in very specific applications. For all other applications,
ForceSeatMI is recommended.

2How to activate the license

ForceSeatDI license is kept in the motion controller so the activation process is different than for
ForceSeatMI. Once you receive the activation code do following steps:

1. Install ForceSeatPM
2. Open ForceSeatPM main window
3. Click Tools and Diagnostic and then Devices
4. Click Quick Codes
5. Enter the activation code. The verification might take a while.
6. Once finish, close the Quick Codes window.
7. Turn off the device
8. Turn on the device
9. In Devices window you should see FSDI displayed in Features field

3Cross compiling for Raspberry
Pi

3.1 Introduction

This short tutorial shows the idea of using VisualGDB to build one of our examples for Raspberry Pi.
This section does not describe the full tool chain and build system configuration, it only indicates
a few important key points that should help you to configure your project:

• preprocessor directives
• copying .so file to destination board
• debugging the program as root.

For a more detailed description of how to use and configure VisualGDB, please refer to VisualGDB
documentation.

TIP
VisualGDB is not mandatory for ForceSeatDI to work on Raspberry Pi. You can compile
ForceSeatDI using any other build system.

3.2 New project

Start Visual Studio and create a new Linux Project. Make sure to create it in the directory without
spaces in the name, e.g. C:\ForceSeatDI

12 3 CROSS COMPILING FOR RASPBERRY PI

Choose Application as project type andMSBuild as tool chain.

Choose building under Raspberry Pi over network. In order to do it, create new SSH connection,
then fill IP address and credentials. Make sure that your Raspberry Pi has libusb and compiler
installed (check ForceSeatDI readme.txt for details).

3.2 NEW PROJECT 13

After wizard creates project for you, rename RaspberryProject1.cpp toMain.cpp

Copy following files from ForceSeatDI archive code directory to your project directory:

1. ForceSeatDI.h
2. ForceSeatDI_Defines.h
3. ForceSeatDI_Functions.h
4. ForceSeatDI_Loader.c
5. ForceSeatDI_Structs.cs

Add ForceSeatDI_Loader.c to your project and copyMain.cpp from FastPos_CPP_Linux example
(overwrite the Main.cpp in your project).

14 3 CROSS COMPILING FOR RASPBERRY PI

3.3 Project configuration

Open the project Properties.

3.3 PROJECT CONFIGURATION 15

Go toPreprocessor configuration and addNO_IMPORT_FORCESEAT_DI to the list of definitions.

Go toVisualGDB settings andopenDebug configuration (Release configuration for release build).

16 3 CROSS COMPILING FOR RASPBERRY PI

Go to Debug Settings and select run as root.

WARNING
If the application is not executed as root, it will not be able to detach the USB device from
the kernel and connect to the motion platform.

Go to Custom build steps and add new After build step – Transfer a single file.

Browse and select source file ForceSeatDI32.RSPi_3.so on your PC disk.

Type: $(TargetDir)/ForceSeatDI32.so into Target path.

3.4 BUILD AND RUN 17

3.4 Build and run

Rebuild the project.

Run the application and check the Output console.

	General information
	Introduction
	ForceSeatMI vs ForceSeatDI
	Features comparison
	Documentation

	How to activate the license
	Cross compiling for Raspberry Pi
	Introduction
	New project
	Project configuration
	Build and run

